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Abstract The research context of this work is dynamic texture analysis and
characterization. A dynamic texture can be described as a time-varying phe-
nomenon with a certain repetitiveness in both space and time.

Many dynamic textures can be modeled as a large scale propagating wave-
front and local oscillating phenomena.

The Morphological Component Analysis approach with a well chosen dic-
tionary is used to retrieve the components of dynamic textures. We define
two new strategies for adaptive thresholding in the Morphological Compo-
nent Analysis framework, which greatly reduce the computation time when
applied on videos. These strategies are studied with different criteria. Fi-
nally, tests on real image sequences illustrate the efficiency of the proposed
method.

1 Introduction

The study of dynamic textures, or temporal textures, is a recent research
topic in the field of video processing. A dynamic texture can be described as
a time-varying phenomenon with a certain repetitiveness in both space and
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Rochelle, France, e-mail: michel.menard@univ-lr.fr

1



2 Sloven Dubois, Renaud Péteri and Michel Ménard

time. A flag in the wind, ripples at the surface of water, smoke or an escala-
tor are all examples of dynamic textures. Figure 1 shows other examples of
dynamic textures.
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Fig. 1 2D+T slices of two dynamic textures. Here, a dynamic texture is seen as a data

cube and is cut at pixel O(x, y, t), giving three planes (−→x O−→y ), (−→x O−→t ) and (−→y O−→t ).

Without being exhaustive, the study of DT is an active topic, with many
research areas such as synthesis [5], characterization [11, 12, 14] or segmen-
tation [6, 7].

The context of our works is the characterization and the analysis of these
dynamic textures, with the aim of being able to automatically retrieve video
scenes with given dynamic textures [8].

Giving a proper definition of dynamic textures is a notoriously difficult
problem. Dynamic textures are often defined as phenomena varying in both
space and time with a certain spatio-temporal repetitiveness. They cannot
only be considered as a simple extension of static textures to the time domain,
but as a more complex phenomenon resulting from several dynamics. Each
dynamic texture has its own characteristics, such as stationarity, regularity,
repetitiveness, propagation speed, ...

These characteristics are more or less difficult to extract depending on the
complexity of the considered dynamic texture. For instance on figure 2.(a)
showing an image sequence of sea waves, two motions can be observed: the
high-frequency motion of small waves (2), carried by the overall motion of
the internal wave (1). It gets more complex when the two phenomena over-
lap with each other (3). This statement can also be made about an image
sequence of trees on figure 2.(b).

Many dynamic textures can be decomposed into one or several local os-
cillating motions carried by far range waves. In order to better characterize
these two sets of components, it is necessary to extract them separately.

In this article, the Morphological Component Analysis is used for decom-



Morphological Component Analysis for decomposing Dynamic Textures 3

Fig. 2 2D+T slices of two dynamic textures: local oscillating phenomenon (2) and long
range propagating wave (1) and a mixture of both of them (3)

posing and analyzing image sequences of natural scenes. To our knowledge,
the only existing work using Morphological Component Analysis and video
is recent and focuses on the inpainting of a cartoon sequence [17].

In section 2, the Morphological Component Analysis is briefly described.
The dictionaries selected in the Morphological Component Analysis, adapted
to dynamic textures, are presented.

A key issue is the computation time of Morphological Component Analy-
sis that is related to the thresholding strategy. We propose in section 3 two
new adaptive thresholding strategies that reduced the computation time by
a factor of four compared to the original algorithm. To evaluate these new
strategies, different criteria are proposed.

Results on real sequences of dynamic textures are presented in section 4
and future prospects are finally discussed.

2 Decomposing a dynamic texture using Morphological
Component Analysis

In order to perform correct characterization, it is necessary to well under-
stand the nature of dynamic textures. In many works, a dynamic textures is
often described as a time-varying phenomenon with a certain repetitiveness
in both space and time. According to researches on synthesis [10] and obser-
vations made on a large dynamic textures database [13], a dynamic texture
can be modelled as a sum of local oscillations carried by longer range waves.

Recent works for decomposing images and videos [15, 4, 1] seem relevant
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for extracting these components. We have chosen the Morphological Com-
ponent Analysis because of the richness of the available dictionary, which is
crucial, considering the complexity of dynamic textures.

2.1 Morphological Component Analysis approach

The Morphological Component Analysis (MCA) approach finds an accept-
able solution to the inverse problem of decomposing a signal onto a given
vectorial basis, i.e. to extract components (yi)i=1,...,N from a degraded ob-
servation y according to a sparsity constraint. This is obviously an ill-posed
inverse problem.

The MCA approach assumes that each component yi can be represented
sparsely in the associated basis Φi:

∀i = 1, . . . , N, yi = Φiαi and αi = ΦTi yi (1)

where αi are the projection coefficients of yi on basis Φi.
In this way, the obtained dictionary is composed of atoms built by asso-

ciating several transforms Φ = [Φ1, . . . , ΦN ] such that, for each i, yi is well
represented (sparse) in Φi and is not, or at least not as well, represented in
Φj (j 6= i).

This induces that:

∀i, j 6= i ‖ΦTi yi‖0 < ‖ΦTj yi‖0 (2)

‖ . . . ‖0 being the pseudo-norm `0 (number of non-zero coefficients).
The choice of the basis is of course crucial. Each transform possesses its

own characteristics and will be adapted to extract a particular phenomenon.
This choice will be discussed in the next section.

Solving (2) implies to find a solution to the equation : y = Φα. Starck
et al. propose a solution for it in [15] and [16] by finding morphological
components (yi)i=1,...,N with the following optimization problem:

min
y1,...,yN

N∑
i=1

∥∥ΦTi yi∥∥pp such that

∥∥∥∥∥y −
N∑
i=1

yi

∥∥∥∥∥
2

6 σ (3)

where
∥∥ΦTi yi∥∥pp penalizes non-sparse solutions (usually 0 6 p 6 1). σ is the

noise standard deviation.
This optimization problem (3) is not easy to solve.

If all components yj except the ith are fixed till iteration k−1, it is however
proved that the solution α

(k)
i is given by hard thresholding the marginal
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residual r(k)i = y −
∑
j 6=i y

(k−1)
j :

α
(k)
i = δλ(k)

(
ΦTi

(
r
(k)
i

))
(4)

δλ(k) being the thresholding function for threshold λ(k) at step k. These
marginal residuals ri are by construction likely to contain missing informa-
tions of yi. This idea induces an iterative algorithm for thresholding the
marginal residuals, the main steps of which are presented in algorithm 1.

Algorithm 1 Morphological Component Analysis
Task : Decompose a nD signal in dictionary Φ.
Parameters :

• The signal y to be decomposed

• The dictionary Φ = [Φ1, . . . , ΦK ]

• The thresholding strategy strategy

• The stopping condition σ

Initialization :
// Components to be estimated are set to 0

for i = 1 to N do

ỹ
(0)
i = 0

end for

// Initialization of λ
λ(1) = lambda initialization(strategy)

// Initialization of the iteration number

k = 1
Main loop :

while
‚‚‚y −PN

j=1 ỹ
(k−1)
j

‚‚‚
2

6 σ do

// For each component

for i = 1 to N do
// Compute the marginal residual

r̃
(k)
i = y −

P
j 6=i ỹ

(k−1)
j

// Projection of r̃
(k)
i on basis Φi

α̃
(k)
i = ΦTi

“
r̃
(k)
i

”
// Hard thresholding of α̃

(k)
i

α
(k)
i = δλ(k) α̃

(k)
i

// New estimation of ỹi

ỹ
(k)
i = Φi

“
α

(k)
i

”
end for

// Update of threshold λ
λ(k+1) = update(λ(k),strategy)

// Iterate

k = k + 1
end while
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2.2 Choice of the dictionary

A crucial point in the Morphological Component Analysis approach is the
dictionary definition. An unsuitable choice of transformations will lead to
non sparse and irrelevant decompositions of the different dynamical phenom-
ena present in the sequence.

As mentioned previously, we model dynamic texture as a sum of local os-
cillations carried by long range waves. It is therefore necessary to associate
each component with the most representative basis.

In [7], the authors show that the curvelet transform [3] is relevant for
extracting non-local phenomena propagating temporally. It thus seems par-
ticularly interesting to model long range waves present in a dynamic texture.

The second part of the model is composed of locally oscillating phenomena
that will be extracted using the local cosine transform.

The dictionary that we use in the Morphological Component Analysis al-
gorithm is then composed of the 2D+T curvelet transform Φ1 and the 2D+T
local cosine transform Φ2.

2.3 Thresholding strategy

The purpose of this work is the decomposition of natural dynamic textures,
therefore our experiments have been conducted on sequences from the Dyn-
Tex database [13], a large database of dynamic textures. The processed
sequences have a duration of 5 seconds (128 images) and a size of 648 by 540
pixels 1. On volumes of such a size, the computation time is non negligible,
as some transforms require several minutes.

Let function T () measures the execution time of a transform Φi during one
cycle of the algorithm (analysis via Φi and synthesis via ΦTi ). Two different
platforms2 have been used for the chosen dictionary, giving the computation
time presented in table 1.

Platform 1 (32 bits) Platform 2 (64 bits)

T (Φ1) ≈ T (ΦT1 ) ≈ 259 seconds ≈ 109 seconds

T (Φ2) ≈ T (ΦT2 ) ≈ 120 seconds ≈ 85 seconds

Table 1 Computation time required for performing an analysis or a synthesis with the

chosen dictionary on 2 different hardware configurations.

1 i.e. more than 44 million voxels
2 Platform 1 : Processor 32 bits, 2.4GHz, 4GB of RAM

Platform 2 : Processor 64 bits, 3.2GHz, 24GB of RAM
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A recent work [2] has shown that a hundred of iterations is necessary to
establish a good separation of the different components when a linear thresh-
olding strategy (LTS) is used. In our case, the total computational time for a
5 seconds sequence is given by: 100∗(T (ΦT1 )+T (Φ1)+T (ΦT2 )+T (Φ2)), which
corresponds to 21 hours on platform 1, and around 11 hours on platform 2.

If we extend this result to the entire DynTex database, 605 days of calcu-
lation are required on a standard computer. This computation time can be
reduced to 309 days on a dedicated server.

Recently, Bobin et al. [2] have proposed a thresholding strategy ’Mean
of Max’ (MoMS) that enables to obtain similar results but with fewer it-
erations (50 in average instead of 100). It requires a computation time of
approximately 15 hours 45 (respectively 6 hours on platform 2) for a 5 sec-
onds video, resulting in approximately 453 days (respectively 232 days) for
the whole database.

For indexing the whole DynTex database, the computation time of the
MoMS is still acceptable, since it is always possible to divide the workload
between several processors. In the case where one searches for a particular
texture using a query sequence, these calculations are acceptable only on
sequences with limited duration and low resolution. We propose to reduce
these limitations by introducing two new thresholding strategies.

3 Two new thresholding strategies

Results of the decomposition using the MCA algorithm strongly depend on
the evolution of the threshold λ(k) in one iteration of the main loop. Figure
3 shows two different evolutions of λ(k) corresponding to two strategies (S1)
and (S2). Evolution of λ(k) is slower in case (S1) than in case (S2). In
this example, evolution (S1), respectively (S2), leads to select 5% of the
coefficients, respectively 25%, in the two bases. If we consider that evolution
(S1) gives here an optimal threshold, a failure to control the value of λ(k)

(case S2) will lead to a rapid allocation of too many coefficients in the two
bases, degrading the final decomposition.

The linear thresholding strategy (LTS) leads to the optimum λ(k) for 100
iterations [2]. For a large number of natural textures, this number of iter-
ations can be greatly reduced, depending on the texture properties. LTS is
then no longer optimum. However, the threshold evolution using LTS can
be considered as a minimum slope below which the evolution of λ(k) is sub-
optimal. A good strategy for computing λ(k) should lead to a slope greater
than or equal to the one obtained using LTS.

The ’Mean of Max’ strategy (MoMS) is interesting as it can adaptively
change the evolution of λ(k). However, on natural texture sequences, this
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(1)

(2)

5%

25%

1 iteration

Fig. 3 Two thresholding strategies leading to different evolutions of the threshold value

during one iteration of the main loop.

strategy tends to reduce too drastically this slope, or even almost cancel it.

3.1 Adaptive thresholding strategy with linear
correction (ATSLc)

We propose to combine these two strategies into a new so-called adaptive
thresholding strategy with linear correction (ATSLc), which defines λ(k+1)

as the minimum value of λ(k+1) calculated using strategies LTS and MoMS.
The λ(k) update using ATSLc is formalized as follows:

λ(k+1) = min
(

1
2

(m1 +m2), λ(k) − λ(1) − λmin

100

)
(5)

where:
m1 = max

∀i

∥∥ΦTi r(k)∥∥∞
m2 = max

∀j,j 6=i0

∥∥ΦTj r(k)∥∥∞ with i0 = argmax
∀i

∥∥ΦTi r(k)∥∥∞
r(k) = y −

∑K
j=1 ỹ

(k)
j being the total residual

Using this strategy, we are sure to change the value of λ(k+1) correspond-
ing to the steepest slope. In other words, when MoMS leads to values of

λ(k+1) evolving slowly, λ(k+1) follows the LTS λ(k+1) = λ(k) − λ(1) − λmin

100
.

Otherwise, λ(k+1) follows the MoMS, λ(k+1) = 1
2 (m1 + m2), reducing the

number of main loops in algorithm 1.
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3.2 Adaptive thresholding strategy with exponential
correction (ATSEc)

In some cases, the distribution of the coefficients is concentrated around the
origin. This phenomenon can occur for several reasons, for instance an un-
suitable choice of the decomposition bases leading to a similar non-sparse
representation in the different bases.

In these cases, the LTS is no longer optimum. Close to the origin, the
threshold range will indeed be too large compared to the number of coef-
ficients to select in this interval. Figure 4 shows that about 80% of these
coefficients are contained in the last interval: they will be all assigned at
once, leading to unsuitable decompositions.

To overcome this problem, [16] use a thresholding strategy with expo-
nential decay, ETS. This strategy enables to threshold on a large range of
coefficients at the first iterations of the algorithm, and on small intervals at
the last iterations (see figure 4). This strategy leads to a better assignment
of the coefficients when concentrated around this origin. However, as for the
LTS strategy, the number of iterations has to be set to a large value.

SSL
SSE
LTS
ETS

Fig. 4 Threshold intervals for the two strategies LTS and ETS on an illustrative distri-
bution.

Similarly to the ATSLc, we propose a second thresholding strategy com-
bining the ETS and the MoMS approaches, so-called adaptive thresholding
strategy with exponential correction, ATSEc.

It can be formalized as follows:

λ(k+1) = min
(

1
2

(m1 +m2), λ(k) ∗
(
λ(1) − λmin

)− 1
99
)

(6)

In other words, when MoMS leads to values of λ(k+1) evolving too slowly,

λ(k+1) follows the ETS strategy, λ(k+1) = λ(k) ∗
(
λ(1) − λmin

)− 1
99 . Otherwise,

λ(k+1) follows the MoMS strategy, λ(k+1) = 1
2 (m1 +m2), which also enables

to decrease the iteration number in the main loop of algorithm 1, while sig-
nificantly decreasing the slope close to the origin.
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3.3 Evaluation

In a first step the criterion of the gain in computing time is studied, then in
a second step, several criteria for evaluating the decomposition quality are
presented.

3.3.1 Computation time consideration

In both cases, the number of iterations required for the decomposition of an
image sequence of DynTex decreases sharply. Indeed, it takes an average of
12 iterations for ATSLc and of 17 iterations for ATSEc to achieve decompo-
sition.

The gain in terms of computing time is not proportional to the number
of iterations removed. Indeed, as in the case of MoMS strategy, ATSLc and
ATSEc strategies require an additional projection on all bases to calculate
m1 and m2.

The computing time for a sequence of images corresponds to the rela-
tionship : (Number of iterations)∗(2 ∗ T (Φ1) + T (ΦT1 ) + 2 ∗ T (ΦT2 ) + T (Φ2)).
The average performance of the two strategies, ATSLc and ATSEc, is es-
timated in table 2 on the whole DynTex database. The computation time
strategies of the literature are also presented.

LTS ETS MoMS ATSLc ATSEc

Platform 1 ≈ 21h ≈ 21h ≈ 15h45 ≈ 3h45 ≈ 5h20
Estimated time for a video

Platform 2 ≈ 10h45 ≈ 10h45 ≈ 8h ≈ 1h55 ≈ 2h45

Platform 1 ≈ 605d ≈ 605d ≈ 453d ≈ 108d ≈ 154d Estimated time for the whole
DynTex databasePlatform 2 ≈ 309d ≈ 309d ≈ 232d ≈ 56d ≈ 79d

Table 2 Estimated computation times required to perform the decomposition using the

MCA algorithm for different thresholding strategies. This is the average time estimated on
the DynTex database for an image sequence. Moreover, the number of days for complete

decomposition of the database is indicated, for both platforms.

In the case of the use of platform 2, about 2 hours are needed for the
decomposition of an image sequence with a size of 720 × 576 × 128 voxels
using the ATSLc strategy. It is a reduction by a factor of 5 of the computing
time compared to the original LTS and ETS strategies.

If this result is extended to the whole of DynTex database, it takes about
60 days to perform a decomposition using ATSLc and ATSEc strategies.
Moreover, this time can be divided by the number of cores used. In our case,
the decomposition of the whole image sequences of dynamic textures, i.e.
about 700, was carried out in a week.

In terms of computation time, the gain achieved by using ATSLc and AT-
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SEc strategies seems very promising. An evaluation of the quality of the
results is now presented.

3.3.2 `0-norm criteria

At first, the quality of the decomposition using ATSLc and ATSEc strategies
through the `0-norm, as compared to LTS and ETS original strategies, is
studied.

The number of coefficients selected by the MCA algorithm over the itera-
tions k after the thresholding step is:

N
(k)
coef =

N∑
i=1

∥∥∥α(k)
i

∥∥∥
0

(7)

This indicator is used to evaluate the quality of the thresholding strategy.
Indeed, for a poorly suited strategy, the number of coefficients selected will
be irregular during iterations. This phenomenon is observed through a non-
regular growth curve. In other words, during iterations, the more N

(k)
coef

evolves regularly, the more the thresholding strategy can be considered as
being good.

On plots of figure 5, the evolution of N (k)
coef was computed for LTS, ETS,

ATSLc and ATSEc strategies for four different sequences; they are displayed
here in logarithmic scale. Observations made on these four videos can apply
to all the sequences that we have tested (about 200 image sequences):

• The ATSLc and ATSEc strategies have similar behavior during the first
iterations and diverge thereafter. During these first iterations, the two
strategies choose the maximum slope that is 1

2 (m1 + m2), then each of
them behaves differently according to their respective corrections.

• For strategy LTS, most coefficients are selected in the latest iterations of
the algorithm (the last 20 approximately). This is observed through the
rapid growth curve N (k)

coef in the last steps. Thus, this strategy can lead
to carrying out many iterations without selecting coefficients, then to a
selection that is too fast at the end.

• By observing the growth of N (k)
coef for the ATSLc and ATSEc strategies,

we can observe that the ATSEc is more regular. Indeed, the number of
coefficients selected by the ATSLc strategy increases rapidly in the last
iterations, contrary to ATSEc.

Now let us observe, for each basis Φi, the error on the choice of coefficients
after the decomposition process. To this aim, the selected coefficients for two
different threshold strategies are studied and the differences counted.

This criterion is formalized as follows:

∀i, ζi =
1
M

∥∥∥Γ (α(S1)
i

)
− Γ

(
α

(S2)
i

)∥∥∥
0

(8)
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Number of coefficientsNumber of coefficientsNumber of coefficientsNumber of coefficients
TLS
ETS
ATSLc
ATSEc

Number of coefficients
TLS
ETS
ATSLc
ATSEc

Number of coefficients Number of coefficients
TLS
ETS
ATSLc
ATSEc

TLS
ETS
ATSLc
ATSEc

Number of coefficients Number of coefficients

Fig. 5 Study of LTS, ETS, ATSLc and ATSEc strategies. The plots represent the number

of thresholded coefficients (logarithmic scale) during the iterations on four different image

sequences.

whereby S1 and S2 are the two strategies in competition, α(S1)
i (respectively

α
(S2)
i ) coefficients of the basis Φi selected by the MCA algorithm using S1

strategy (respectively S2), M the total number of coefficients αi, and Γ (A)
the operator setting the value to 1 if the coefficients are different from 0.

Table 3 presents the means and standard deviations of the errors on the
coefficients poorly selected between two competing strategies (for example
LTS and ATSLc) for each basis of the dictionary. These data were obtained
using 200 videos. ζ1 (respectively ζ2) represents the error on the component
of the 2D+T curvelet transform (respectively the component of the 2D+T
local cosine transform).

We note, as for criterion (8), that:

• Both ATSLc and ATSEc strategies are approaching the solutions obtained
by LTS and ETS strategies. Indeed, the greatest average error is 16.66%.
However, this is the comparison between ATSEc and LTS strategies, which
is not the easiest to compare. Even if the final components for the two
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LTS ETS
ζ1 ζ2 ζ1 ζ2

µ σ µ σ µ σ µ σ

ATSLc 6.01% 3.12 0.24% 0.16 15.93% 11.12 1.66% 1.48

ATSEc 16.66% 11.56 0.90% 0.70 2.46% 1.67 0.98% 1.03

Table 3 Means and standard deviations of the error on the coefficients poorly selected of

S1 strategy (for example ATSLc) compared to a reference S2 strategy (for example LTS)
for each basis of the dictionary (ζ1 for the 2D+T curvelet transform and ζ2 for the 2D+T

local cosine transform).

strategies are similar (this will be discussed later), the position of selected
coefficients may differ.

• The adaptive thresholding strategy best approaching original strategies is
the ATSEc strategy. This is observed through the means and standard
deviations of the errors: ζ1 and ζ2 which are weak.

• As observed using criterion (7), ATSLc strategy tends to select quickly
many coefficients which can lead to decomposition errors. This is observed
by an average error higher than in the case of the use of ATSEc. This
strategy implied many more iterations to divide the coefficients around
the origin, thus leading to a small error. These statements can be made
for other criteria.

3.3.3 `2-norm criteria

After studying the influence of strategies on the selection of coefficients, the
`2-norm reconstruction error of the algorithm over the iterations is computed.
It is formalized by:

ξ
(k)
T =

∥∥∥∥∥y −
N∑
i=1

ỹ
(k)
i

∥∥∥∥∥
2

(9)

As for criterion (7), the regularity of the plot reflects the performance of the
thresholding strategy: the more rapidly and steadily the reconstruction error
decreases over the iterations, the more the selected coefficients are relevant
and representative of the original signal. On plots of figure 6, the evolution
of ξ(k)T was calculated for the LTS, ETS, ATSLc and ATSEc strategies for
four image sequences. As for criterion (8), the results obtained on these four
videos are representative of all tests (200 videos).

Several observations can be made:

• in the case of the LTS strategy, the most representative coefficients of the
original signal are selected during the latest iteration of the algorithm.
This is observed through the rapid decrease of the plot ξ(k)T .
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Number of coefficientsNumber of coefficientsNumber of coefficientsReconstruction error
TLS
ETS
ATSLc
ATSEc

Reconstruction error
TLS
ETS
ATSLc
ATSEc

TLS
ETS
ATSLc
ATSEc

TLS
ETS
ATSLc
ATSEc

Reconstruction error Reconstruction error

Fig. 6 Study of LTS, ETS, ATSLc and ATSEc strategies. The plots represent the recon-

struction error in `2-norm during the iterations.

• the ETS strategy selects many relevant coefficients during the first it-
erations: a rapid decline of ξ(k)T is observed. Then it decreases for the
remaining coefficients to be allocated. This phenomenon can be explained
by the fact that the size ranges of selected coefficients decrease gradually,
as a result of the iterations of the MCA algorithm.

• in the case of the two adaptive strategies, ATSLc and ATSEc, the re-
construction error decreases very quickly. Both strategies regularly select
pertinent coefficients and quickly approach the original signal.

• the adaptive ATSEc strategy seems more efficient than ATSLc. Indeed,
a sudden drop in the reconstruction error is observed in the case of AT-
SLc. This is because the MCA algorithm selects many relevant coefficients
within few iterations. However, the coefficient allocation can be problem-
atic, unlike the ATSEc strategy for which the allocation is made on a
larger number of iterations.

The previous study focused on the `2-norm error between the reconstruc-
tion and the original image sequence. However, we observe that the last
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iteration of the algorithm (cf. plots on figure 6) is identical for all strategies.
This is explained by the construction of different strategies: each led the
threshold λ(k) to a minimum value λmin determined by the user.

Criterion (9) thus makes it possible to observe the performance of strate-
gies over the iterations of the algorithm, it does not make it possible to
evaluate the quality of the different components extracted.

For this purpose, a criterion that compares the morphological components
obtained by the competing strategies is proposed:

∀i, ξi =
1

ξmax

∥∥∥ỹ(S1)
i − ỹ(S2)

i

∥∥∥
2

(10)

where ỹ(S1)
i (respectively ỹ(S2)

i ) is the morphological component i estimated
with the S1 strategy (respectively S2). ξmax is computed for each component
ỹ
(S2)
i as the biggest possible mistake we can commit.

Table 4 presents the means and standard deviations of errors in `2-norm
on each base of the dictionary with respect to the chosen strategies. These
results were obtained from 200 image sequences. ξ1 (respectively ξ2 and
ξT ) represents the error on the component of the 2D+T curvelet transform
(respectively the component of the 2D+T local cosine transform and the
reconstruction).

LTS

ξT ξ1 ξ2
µ σ µ σ µ σ

ATSLc 0.27% 0.10 1.56% 1.08 1.56% 0.92

ATSEc 0.48% 0.20 2.30% 1.82 2.18% 1.50

ETS
ξT ξ1 ξ2

µ σ µ σ µ σ

ATSLc 0.39% 0.15 2.67% 1.90 2.43% 1.58

ATSEc 0.38% 0.17 1.55% 1.51 1.50% 1.22

Table 4 Means and standard deviations of the error in `2-norm between two strategies

S1 (for example ATSLc) and S2 (for example LTS) for each base of dictionary (ξ1 for the
2D+T curvelet transform, ξ2 for the 2D+T local cosine transform) and its reconstruction
ξT .

Observations are summarized here:

• the maximum mean error between reconstructions obtained from two dif-
ferent strategies is only 0.48%. This indicates that, whatever the strategy
used, the reconstruction will be almost identical.

• both adaptive strategies ATSLc and ATSEc, fairly approach the decompo-
sitions obtained using the original strategies. Indeed, for each component,
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the maximum average error observed between two different strategies is
only 2.67%.

Considering the different criteria studied and the gain in terms of com-
putation time, we can establish that the proposed strategies prove to be
relevant for the processing of dynamic texture sequences. In the next sec-
tion, we present the decomposition results of dynamic textures using the
MCA algorithm using the adaptive thresholding strategy with exponential
correction.

4 Experiments

4.1 Conditions

Results obtained using ATSLc and ATSEc strategies are promising and sat-
isfactory. In this section, three of them are described in details3.

Decompositions of dynamic textures presented here were obtained using
a dictionary composed of the 2D+T curvelet transform and the 2D+T local
cosine transform.

The curvelet transform was calculated using 5 scales of decomposition, and
4 angular subdivisions at each change of scale. The local cosine transform
was performed on windows of size 32× 32× 32 voxels. These decompositions
were calculated using the adaptive thresholding strategy with exponential
correction. As in many experiments [9], we use λmin = τσ with τ = 3.

4.2 Results

The first video shows a duck drifting slowly in a canal (Figure 7). Reflec-
tions of trees in the rippling water and a static texture background are also
observable. Figure 7 shows the decomposition results obtained on this video
using the MCA algorithm with the ATSEc strategy.

The geometric component is retrieved using the curvelet transform while
the texture component is obtained by the local cosine transform: ripples,
which are local phenomena, are well captured by the texture component,
whereas reflections on the water surface are retrieved in the geometric com-
ponent.

Spatiotemporal cuts along a xt plane make it possible to visualize the
obtained decomposition. They show that the different objects in the scene

3 These three videos and other results are visible at:

http://mia.univ-larochelle.fr/demos/dynamic_textures/
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Real video

Curvelet component LDCT component

Fig. 7 Results of the MCA decomposition on a video using the ATSEc strategy. Spatio-

temporal cuts xt enable to emphasize the temporal aspect of the decomposition.

(the duck, reflections of the trees on water, . . . ) are correctly considered as
geometry. Reflections of the trees are not present in the texture component
anymore. One can also observe that oscillations have been strongly attenu-
ated in the geometric component.

This decomposition can bring us information that was not discernable on
the original image sequence. For example, the texture of the duck’s plumage
under its neck can be observed in the texture component, and is not visible
in the original video.

The second sequence presented is the surface of the sea near a beach.
It consists of a carrier wave (the waves roll) and local phenomena (the foam).
Figure 8 shows the decomposition results.

The part corresponding to the curvelet transform consists of the roller
waves while the local foam and small ripples are captured by the local cosine
tranform. On areas represented as surfaces, the texture component does not
contain the rolls of the waves, completely present in the geometry. The sep-
aration between the waves roll and the foam is clearly observable.

The next image sequence represents a fountain (Figure 9). This foun-
tain is composed of a jet, which once expelled, creates ripples at the water
surface. Results of the 2D+T decomposition are shown on figure 9.
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Real video Curvelet component

LDCT component

Fig. 8 Decomposition results of a video using the MCA algorithm and the ATSEc strat-
egy. Regions of Interest are plotted as surfaces in order to better visualize the algorithm

behaviour.

The two obtained components seem relevant: in the geometric part, the
central column of the fountain and the bell shape caused by the jet are visi-
ble, whereas almost absent in the texture component.

One can also notice that the entire area in front of the water jet is free of
ripples, observable contrariwise in the other component. These observations
are also well noticeable on areas represented as surfaces where the geometric
part is composed of a slight wave free of ripples.

5 Conclusion and perspectives

This paper deals with the decomposition of dynamic textures in image se-
quences into different dynamical components. After considering the MCA
algorithm and the different possible dictionaries for dynamic texture analy-
sis, we propose two new adaptive thresholding strategies: the ATSLc and the
ATSEc. These two new thresholding strategies lead to a significant gain in
computation time. Compared to the original strategy, the necessary calcula-
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Real video

Curvelet component

LDCT component

Fig. 9 Decomposition results of a video using the MCA algorithm and the ATSEc strat-

egy. Regions of Interest are plotted as surfaces in order to better visualize the algorithm
behaviour.

tions are reduced by about five times, with equivalent quality of results. In
our research context of dynamic texture indexing, it can eliminate the con-
straints of low resolution and duration on queries in a large video database.

Results on real videos from DynTex have been finally presented. These
results confirm the relevance of the proposed model and make it possible to
understand the different complex phenomena present in dynamic textures.

Other thresholding strategies are being studied to further improve this
computation time. It is particularly necessary to develop strategies that bet-
ter take into account our proposed model and the features of natural dynamic
textures. The extracted components of dynamic textures can later be used
as features for video retrieval applications.

In the context of video indexing, the different components obtained using
the MCA algorithm can be used for extracting characteristic features: some
related to the geometry of the dynamic texture (main motion direction, uni-
formity of the overall movement,. . . ) and some characterizing more local
phenomena (speed, local vortex, . . . ).
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12. Péteri, R., Chetverikov, D.: Qualitative characterization of dynamic textures for video

retrieval. In: International Conference on Computer Vision and Graphics (ICCVG 04),
pp. 33–38. Warsaw, Poland (2004)
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