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Abstract. This paper presents four spatio-temporal wavelet decompo-
sitions for characterizing dynamic textures. The main goal of this work is
to compare the influence of spatial and temporal variables in the wavelet
decomposition scheme. Its novelty is to establish a comparison between
the only existing method [11] and three other spatio-temporal decompo-
sitions.
The four decomposition schemes are presented and successfully applied
on a large dynamic texture database. Construction of feature descriptors
are tackled as well their relevance, and performances of the methods are
discussed. Finally, future prospects are exposed.
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1 Introduction

The last fifteen years have seen the rising of a new issue in texture analysis
which its extension to the spatio-temporal domain, called dynamic textures. Dy-
namic textures are spatially and temporally repetitive patterns like trees waving
in the wind, water flows, fire, smoke phenomena, rotational motions . . .

The study of dynamic textures has several fields of applications. One of the
main topics is the synthesis of dynamic textures [6, 12]. Other fields of research
are dynamic texture detection [4] or dynamic texture segmentation [2, 5]. Our
research context is the recognition and description of dynamic textures [8, 14].
For a brief survey on this topic, one could refer to [3].

A dynamic texture is composed of motions occurring at several spatio-temporal
scales: on figure 1 (a), one can observe the low spatio-temporal motion of the
trunk and the high spatio-temporal motion of small branches. An efficient method
should then be able to capture this spatio-temporal behavior.

A natural tool for multiscale analysis is the wavelet transform. In the field of
image processing, the wavelet transform has been successfully used for character-
izing static textures. For instance, gabor wavelets have been used for computing
the texture descriptor of the MPEG-7 norm [13].
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Fig. 1. 2D+t slices of two dynamic textures. Here, a dynamic texture is seen as a data
cube and is cut at pixel O(x, y, t) for obtaining three planes (−→x O−→y ), (−→x O

−→
t ) and

(−→y O
−→
t ).

A natural idea is hence to extend the wavelet decomposition to the tem-
poral domain. To our knowledge, the work of [11] has been so far the only
spatio-temporal wavelet decomposition method for characterizing dynamic tex-
tures. Yet, the authors use a small offline database, which can be a limitation
when it comes to study feature relevance and to compare different methods.

In this paper, we present a comparison between this method [11] and three
other spatio-temporal wavelet decomposition schemes. Our goal is to study the
influence of spatial or temporal variables in the decomposition scheme. For rele-
vant testing purposes, we also aim at computing results on a large online dynamic
texture dataset [9].

This article is organized as follows : section 2 recalls how to compute the
discrete wavelet transform using filter banks. Section 3 presents four spatio-
temporal wavelet decomposition methods which differ from the way space and
time variables are treated. In section 4 the construction of texture feature de-
scriptors for each decomposition scheme is presented. Finally, the relevance of
each decomposition scheme is tested on a large dataset of dynamic textures [9]
and numerical results are presented and discussed.

2 Discrete Wavelet Transform and filter banks

For a better understanding of the different decomposition schemes, the dis-
crete wavelet transform (DWT) and its associated filter bank is recalled. For any
level j and for any n, we denote:

aj [n] = 〈f, φ2j

n 〉 and dj [n] = 〈f, ψ2j

n 〉 (1)

with φ the scaling function and ψ is the mother wavelet. aj [n] is the approxima-
tion of the signal f and dj [n] its details at resolution 2j .

A fast discrete wavelet transform implementation is performed using filter
bank [7]. Relations between the decomposition scales are:

aj+1[n] = aj [2n]⊗ h and dj+1[n] = aj [2n]⊗ g (2)
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where⊗ denotes the convolution product, h and g are respectively one-dimensional
low-pass and high-pass decomposition filters associated to the scaling function
and the mother wavelet, and g[m] = g[−m]. This filter bank is represented on
figure 2. Thereafter in the article, the symbol WT represents the filter bank.

aj
h

g

↓2 aj+1

dj+1↓2

Fig. 2. Scheme of discrete wavelet transform for one level of decomposition where F
is the convolution by F and ↓ 2 is the decimation by 2

For digital images, the fast wavelet transform is extended to the 2D case
using one scaling function and three mother wavelets (see [7]).

At each scale one approximation subband and three detail subbands are ob-
tained using the following filter relations:

aj+1[n,m] = aj [2n, 2m] ⊗ hx hy and dj+1
v [n,m] = aj [2n, 2m] ⊗ hx gy

dj+1
h [n,m] = aj [2n, 2m] ⊗ gx hy dj+1

d [n,m] = aj [2n, 2m] ⊗ gx gy
(3)

with the notation hg[n1, n2] = h[n1]g[n2] (hence the associated 2D filters are the
matrix product of 1D filters).

3 Video Analysis using wavelet decomposition

In this section, four spatio-temporal decomposition schemes using wavelets
are presented. They vary in the way they consider space and time variables in
the multiresolution analysis.

3.1 Spatial Wavelet Decomposition

A straightforward approach is to use the wavelet transform image per image.
In this case, there is no consideration on the temporal correlation between two
successive frames. The first method is summarized figure 3. For each image and
for each scale of multiresolution analysis, the approximation subband and three
details subbands are computed. The feature descriptors use wavelet subband
energies and will be detailed in section 4.

3.2 Temporal Wavelet Decomposition

The first method considers a video image per image, and is thus a purely
spatial method. The second natural approach is to perform the multiresolution
analysis in the time direction.

Figure 4 shows how the feature descriptors is extracted. For each pixel (x, y)
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Fig. 3. Spatial wavelet decomposition applied to a sequence of 64 images for obtaining

feature descriptors. WT is the filter bank.
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Fig. 4. Temporal wavelet decomposition applied to sequence of 64 images for obtaining

feature descriptors. WT is the filter bank.

of a dynamic texture video, the temporal profile is extracted and its one dimen-
sional wavelet transform is performed.

The associated filter bank can be written in the same way than in section 2,
filters ht and gt being applied in the time direction.

3.3 2D+T Wavelet Decomposition using filter product

Whereas the first method is a purely spatial decomposition and the second
one is a temporal decomposition, the third method performs decomposition spa-
tially and temporally.

This extension to the temporal domain of the 2D discrete wavelet transform
is done using separable filter banks. As in the 2D case, a separable 3 dimen-
sional convolution can be factored into one-dimensional convolution along rows,
columns and image indexes of the video. A cascade of three filters is obtained
for each decomposition level and different subbands can be obtained with the
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following relations:

aj+1[n, m, p] = aj [2n, 2m, 2p] ⊗ hx hy ht dj+1
t [n, m, p] = aj [2n, 2m, 2p] ⊗ hx hy gt

dj+1
h [n, m, p] = aj [2n, 2m, 2p] ⊗ gx hy ht dj+1

ht [n, m, p] = aj [2n, 2m, 2p] ⊗ gx hy gt

dj+1
v [n, m, p] = aj [2n, 2m, 2p] ⊗ hx gy ht dj+1

vt [n, m, p] = aj [2n, 2m, 2p] ⊗ hx gy gt

dj+1
d [n, m, p] = aj [2n, 2m, 2p] ⊗ gx gy ht dj+1

dt [n, m, p] = aj [2n, 2m, 2p] ⊗ gx gy gt

(4)

Figure 5 shows the third method. For a video of 64 images, seven detail
subcubes and one approximation subcube are computed for each scale.
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Fig. 5. Simple 3D wavelet decomposition applied to a sequence of 64 images for ob-

taining feature descriptors. WT is the filter bank.

3.4 J. R. Smith et al. Wavelet Decomposition

The last decomposition method is the one of Smith et al. [11]. This transform
is similar to the 2D+T wavelet decomposition, except that the temporal filter
is applied two times at each multiresolution step so that the video is decimated
twice spatially and twice temporally. For a video of 64 images, they then obtained
fifteen detail subcubes and one approximation subcube (see [11] for more details).

For a given resolution 2j , the filter bank can be written as follows :

aj+1[n, m, p] = aj [2n, 2m, 4p] ⊗ hx hy ht ht dj+1
t [n, m, p] = aj [2n, 2m, 4p] ⊗ hx hy ht gt

dj+1
h [n, m, p] = aj [2n, 2m, 4p] ⊗ gx hy ht ht dj+1

ht [n, m, p] = aj [2n, 2m, 4p] ⊗ gx hy ht gt

dj+1
v [n, m, p] = aj [2n, 2m, 4p] ⊗ hx gy ht ht dj+1

vt [n, m, p] = aj [2n, 2m, 4p] ⊗ hx gy ht gt

dj+1
d [n, m, p] = aj [2n, 2m, 4p] ⊗ gx gy ht ht dj+1

dt [n, m, p] = aj [2n, 2m, 4p] ⊗ gx gy ht gt

dj+1
t [n, m, p] = aj [2n, 2m, 4p] ⊗ hx hy gt ht dj+1

tt [n, m, p] = aj [2n, 2m, 4p] ⊗ hx hy gt gt

dj+1
ht [n, m, p] = aj [2n, 2m, 4p] ⊗ gx hy gt ht dj+1

htt [n, m, p] = aj [2n, 2m, 4p] ⊗ gx hy gt gt

dj+1
vt [n, m, p] = aj [2n, 2m, 4p] ⊗ hx gy gt ht dj+1

vtt [n, m, p] = aj [2n, 2m, 4p] ⊗ hx gy gt gt

dj+1
dt [n, m, p] = aj [2n, 2m, 4p] ⊗ gx gy gt ht dj+1

dtt [n, m, p] = aj [2n, 2m, 4p] ⊗ gx gy gt gt

(5)

For all four presented methods, feature vectors based on wavelet energies are
computed and tested in the next sections.

4 Computing dynamic texture descriptors

In order to characterize a given dynamic texture, subband energies are used.
For each decomposition, a family of wavelet coefficients {dj

k} is obtained, k being
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the direction that depends on the wavelet decomposition scheme (h, v, d, and
t). A classical way for establishing feature descriptors is to sum the energy of
each subband as follows [11]:

Ej
k =

1
XY T

X∑
x

Y∑
y

T∑
t

|dj
k|

2 (6)

where j denotes the decomposition level, k the direction, X, Y , T are the spatio-
temporal dimensions.

The size of feature descriptors depends on the decomposition method. Table
1 gives this size with respect to the method. This table shows that three methods
are computed with three decomposition levels and one with five levels.

Methods Spatial Wavelet Temporal Wavelet 2D+T Wavelet J. R. Smith et al.
Decomposition Decomposition Decomposition Wavelet Decomposition

Size 9 5 21 45

Table 1. Size of feature descriptors with respect to the wavelet decomposition method

5 Results

The feature vectors of the four methods are tested using 83 videos from Dyn-
Tex [9], a database that provides high-quality videos of dynamic textures. These
videos are divided into five classes, representative of different spatio-temporal
dynamics. An example for each class can be seen on figure 6.

Dynamic textures of class (a) are composed of low and high frequency mo-
tions (for instance a wave motion and sea foam). Class (b) is composed of oscil-
lating motions with different velocities. For example a tree waving in the wind
is composed of high oscillations for small branches or leaves and low oscillations
for big branches or the trunk. Class (c) is a high frequency motion only, like
fountains or wavy water. The class (d) represents a fluid motion, for instance
smoke. This is a difficult class of dynamic textures because they can be some-
times partially transparent. The last class (e) is composed of simple translation
events like an escalator motion.

(a) (b) (c) (d) (e)

Fig. 6. Sample for each class.

In order to be in the same testing conditions than [11], the low pass filters
and the high pass filters used for all wavelet decomposition methods are the
Haar filters.
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For studying features pertinence, the ”leave-one-out” test is used (see [8] for
more details). Feature descriptors are computed on 83 videos and results are
summarized in table 2.

Methods Spatial Wavelet Temporal Wavelet 2D+t Wavelet J. R. Smith et al.
Decomposition Decomposition Decomposition Wavelet Decomposition

(a) 20 20 16 17 16
(b) 20 15 11 17 13
(c) 20 17 13 13 8
(d) 16 16 16 12 13
(e) 7 5 4 5 5
Success rate 88% 73% 77% 67%

Table 2. Table of results. The first column, presents the class label and its number of
videos. The intersection class/method represents the number of well classified videos
for each class.

Results show that the first method ”Spatial Wavelet Decomposition” gives
the best classification rate. The main reason is that the four spatio-temporal
wavelet decompositions are simple 3D extension of 2D wavelet transform: these
decompositions do not fully take benefit of temporal dynamics. These transforms
are indeed not adapted to the local motion and create class ambiguities. How-
ever for class (b), the 2D+t methods performs better than other methods. This
is due to the fact dynamic textures of this class are really 3D textures occurring
in all 3 directions of the wavelet transform.

The method ”Temporal Wavelet Decomposition” obtains a good classifica-
tion rate for class (d). Indeed, for most of class (d) videos, the main information
is for the time dimension rather than the spatial one.

An observation of all results shows that the number of well classified videos
is over 50% except for class (c) with the method of [11]. It could be explained
by the fact that their method applies filtering twice in the temporal direction.
As this class (c) is composed of high-frequency phenomena, too much temporal
information is filtered at each step.

6 Conclusion

This paper presents four methods for characterizing dynamic textures. Our
goal is to study the influence of space and time variables in a spatio-temporal
wavelet decomposition scheme and to test the extracted features on a significant
video database of dynamic texture.

The three wavelet decomposition methods we have proposed already per-
form better than the only existing method published so far [11]. On a 83 videos
database, success rate ranges between 73% and 88% depending on the proposed
decomposition method.

When tested on approximately 300 videos where class ambiguity highly in-
creases, the success rate declines of about 20% for each method. It emphasizes
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the need for the development of more adaptive spatio-temporal wavelet trans-
forms that are able to take into account the motion dynamics. Many dynamic
textures are indeed non-stationary and have a privileged motion orientation. Like
geometrical wavelets ([1, 10]) which are more adapted to the geometrical content
of an image than the classical wavelet transform, we are currently working on
developing motion tuned wavelet transforms.
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