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Abstract—The research context of this work is dynamic tex-
ture analysis and characterization. Many dynamic textures can
be modeled as large scale propagating wavefronts and local
oscillating phenomena. After introducing a formal model for
dynamic textures, the Morphological Component Analysis (MCA)
approach with a well chosen dictionary is used to retrieve the
components of dynamic textures. We define two new strategies
for adaptive thresholding in the MCA framework, which greatly
reduce the computation time when applied on videos. Tests on
real image sequences illustrate the efficiency of the proposed
method. An application to global motion estimation is proposed
and future prospects are finally exposed.

Index Terms—Dynamic Textures, Spatio-Temporal Decompo-
sitions, Morphological Component Analysis

I. INTRODUCTION

A. Context

A recent theme in image sequence analysis is the extension
of static textures to the temporal domain, referred as dynamic
textures. A flag flapping in the wind, ripples at the surface
of water, fire, waving trees, smoke or an escalator are all
examples of dynamic textures that can be present in real
scenes. Other examples are shown in Figure 1.

On Figure 1, each image sequence is viewed as a 3D
data cube where cuts enable to observe motions occurring at
different spatio-temporal scales.

Dynamic textures are a research topic of highly growing
interest. The number of publications on dynamic textures in
major computer vision conferences has risen sharply in recent
years. Dynamic or temporal textures were introduced by the
pioneer works of Nelson and Polana [1], [2], where a first
dynamic texture definition was given. Different methods were
thereafter proposed for dynamic texture characterization with
a steep increase since 2003. This growing interest can be
explained by both the democratization of video acquisition
and processing systems, and by a large field of potential
applications. Among them, one can mention:
• video indexing [3], [4]: the goal is to perform elabo-

rate queries associating features of semantic nature. For
example, one can search for videos of turbulent water
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(”turbulent” being a temporal characteristic), or a fire, a
calm lake, a tree waving in the wind, etc.

• video surveillance [5]: in some image sequences, dynamic
texture is an important characteristic of the scene. To
detect an accident or a risky behaviour in traffic, to
supervise and characterize the motion of a crowd, to
detect forest fires or smoke are all examples where a
robust description of dynamic textures is necessary.

• spatio-temporal segmentation of image sequences [6]:
being able to segment a video sequence with respect
to dynamic textures can enrich the comprehension of
a scene. It can enable to detect a perturbation in a
given dynamic texture (presence of a boat on a lake for
instance), to help building video summaries (apparition at
time t of a given dynamic texture), or to better compress
videos according to their texture content.

• dynamic background subtraction: in such applications, the
background can be composed of dynamic textures, such
as moving trees, and a precise characterization of dy-
namic textures can improve the efficiency of background
subtraction algorithms.

• tracking [7]: being able to track dynamic textures in
image sequences could enable to follow and analyze the
evolution of phenomena such fluid flows or vortices, fire.

• videos synthesis [8], [9], [10]: realistic dynamic texture
synthesis is necessary for video games, animations or
video inpainting.

Giving a proper definition of dynamic textures is a notoriously
difficult problem. Dynamic textures are often described as phe-
nomena varying in both space and time with a certain spatio-
temporal repetitivity. They can not only be considered as a
simple extension of static textures to the time domain, but as a
more complex phenomenon resulting from several dynamics.
Yet, around 75% of major publications do not specify their
definition of dynamic textures. For a better understanding of
these complex phenomena, our first contribution is an original
taxonomy of dynamic textures.

B. Taxonomy

Figure 2 shows the proposed taxonomy of dynamic textures.
Different observations can be made:
• videos containing dynamic textures are not all of the
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Figure 1. 2D+T sections of different dynamic textures. An escalator (a), ripples at the surface water (b), an endless spiral (c) and a wave motion with sea
foam (d) can be observed.

same nature. They can be natural (natural processes),
artificial (created by humans) or synthetic (generated by
a computer).

• an image sequence may contain static and/or dynamic
texture components (the dynamic texture component of an
image sequence contains at least one dynamic texture).
For example, a bridge, rocks or ivy are static textured
patterns. Water and trees have a motion that generates
two different dynamic textures.

• a dynamic texture is induced by three factors:
– a textured pattern (rigid or deformable).
– a motion, generated by a force on the textured pattern

or by the camera (translation, zoom). This motion
can be deterministic or stochastic, and the force
generating this motion can be internal (motor of an
escalator), or external (the wind blowing a windmill).

– changes in the acquisition conditions (light reflection
and illumination, etc). These variations induce an
apparent change of the texture and hence create a
dynamic texture.

A windmill with a rotational motion, an escalator going
upward, car traffic, etc are examples of dynamic textures
generated by a rigid textured pattern with deterministic
motion. A fish shoal, a colony of ants, etc, are discrete
texture elements but with a stochastic motion.
Dynamic textures generated by deformable textured pat-
terns with stochastic motions are for instance a waterfall
with eddies, an anemone tossed by the current, etc.
Trees or flowers waving in the wind, a waterfall without
eddies, etc are examples of dynamic textures composed of
deformable textured patterns with deterministic motion.
Depending on the observation scale, some of these phe-
nomena can however be seen as rigid patterns animated
by a deterministic motion.

• a dynamic texture is composed of visually relevant modes
[11]. For instance on Figure 3.a showing an image se-
quence of sea waves, two motions (called modes) can be
observed: the high-frequency motion of small waves (cf.
Figure 3.a.2), carried by the overall motion of the internal
wave (cf. Figure 3.a.1). The process gets more complex

Figure 2. Taxonomy of dynamic textures.
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Figure 3. 2D+T slices of two dynamic textures. One can observe several wavefronts (1), local oscillating phenomena (2) and a mixture of both of them (3).

when the two phenomena overlap with each other (cf.
Figure 3.a.3). These two modes can also be observed on
the image sequence of waving trees on Figure 3.b.

• each dynamic texture has its own characteristics, such as
stationarity, regularity, repetitivity, propagation speed, etc.
These characteristics are more or less difficult to extract
depending on the complexity of the considered dynamic
texture.

All these considerations lead to the following definition of
dynamic textures:

A natural, artificial or synthetic image sequence may con-
tain a static texture component and/or a dynamic texture com-
ponent. This latest one is composed of at least one dynamic
texture.

A dynamic texture is a textured pattern that can be rigid
or deformable. This pattern has a motion induced by a force
which can be internal, external or created by camera motions.
This motion can be deterministic or stochastic. Dynamic
textures are composed of modes, which may overlap, char-
acterized by repetitive spatial and temporal phenomena.

C. Outline of the article

The context of our work is the characterization and
the analysis of these dynamic textures, with the aim of
being able to automatically retrieve video scenes with given
dynamic textures [4]. In the context of dynamic textures
characterization, works can be classified according to the
following taxonomy: methods based on optical flow [12], [13],
[14], which have been the most popular, methods computing
geometric properties in the spatio-temporal volume [15], [16],
methods based on spatio-temporal filtering [17], and methods
that compute spatio-temporal transforms [3], [4].

As mentioned previously, a dynamic texture is composed
of different motions occurring at different spatio-temporal
scales: for instance on Figure 3.b, a low spatio-temporal
motion of a tree’s trunk and high spatio-temporal motions
from its branches and foliage can be observed. To efficiently
characterize dynamic textures implies being able to extract
this spatio-temporal behaviour. A natural tool for multiscale
analysis is the wavelet transform. In image processing,

the wavelet transform has been successfully applied for
characterizing static textures [18]. For instance, Gabor
wavelets have been used for computing texture features in
the MPEG-7 norm [19]. A natural idea is to extend these
multiscale decompositions to the time domain in order to
characterize dynamic textures.

Due to their complexity and variability, finding relevant
decompositions into simpler components could highly help
the understanding and feature extraction of dynamic textures.
Existing image decomposition approaches seem to be
promising for extracting these components [20], [21], [22].

The main contributions of this article is to present a
new method for analyzing dynamic textures using the
Morphological Component Analysis approach (MCA) in
order to extract the underlying dynamical components. The
method is coherent with the proposed dynamic texture model
adapted to natural image sequences.

Section II introduces a new formal model for dynamic
textures, based on observations of the DynTex database [11]
and models used in video synthesis [23]. The relevancy of
such a model is discussed compared to image sequences from
DynTex.

After stressing the interest of decomposition methods for
texture characterization and video indexing (Section III-A),
the Morphological Component Analysis approach (MCA) is
described. Based on the proposed dynamic texture model,
we define dictionaries used in the MCA for separating the
different observed phenomena (Section III-B). Properties of
the iterative projection scheme are then analyzed. Two new
thresholding strategies are presented in Section III-D in order
to reduce the computation time currently prohibitive for such
approaches.

In Section IV-B, a comparison between the different
proposed thresholding strategies is performed. Our approach is
validated on several image sequences. Finally, decomposition
results are used in Section V for the estimation of global
motion in an image sequence, highlighting both the practical
and theoretical interest of the proposed approach.
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II. A MODEL OF DYNAMIC TEXTURE

As mentioned previously, a dynamic texture is often
described as a time varying phenomenon with a certain
repetitivity in both space and time; this definition remains
unprecise and ambiguous. In the previous section, a
taxonomy of dynamic textures has been proposed for better
understanding these phenomena. In this section, inspired
by works on video synthesis, a model for several kinds
of dynamic textures is presented. Our purpose is to model
and understand the different components of a dynamic
texture. It is not intended to outperform existing methods for
synthesizing dynamic textures [8], [10].

Figure 4 shows four image sequences from the DynTex
database, where several dynamic textures occur on the
same video. These textures have different spatio-temporal
supports. Some dynamic textures are even totally or partially
transparent, like smoke or water. Consequently, their spatio-
temporal support can overlap (see Figure 4).

Figure 4. Examples of dynamic textures with different supports. Blue and
red colors correspond to different spatio-temporal supports; the purple color
traduces the overlapping zone of these two supports.

For a given video, the dynamic texture component TV can
be defined as a sum of N ∈ N∗ dynamic textures Υi, each of
them with spatio-temporal support Ωi :

TV (x) =
N∑
i=1

ΥΩi
i (x) (1)

where x = (x, y, t)T represents the coordinates of a voxel in
the video cube.

As observed on Figure 3, a dynamic texture Υi can be
modeled as the superposition of large scale wavefronts and
local oscillating phenomena. It can thus be defined as:

∀i,ΥΩi
i (x) = Pi(x) + Li(x) (2)

where Pi and Li are two functions describing respectively
the wavefront and local phenomena composing a dynamic
texture Υi (for the sake of simplicity, we will consider only
one propagating wave for each dynamic texture).

Formalization (2) is well adapted for the following dynamic
textures:
• deformable textured patterns with stochastic or determin-

istic motion, such as fluid flows (lake, sea, water stream,
etc), oscillations generated by wind (grass, trees, flag,
etc), smoke propagation, etc.

• rigid textured patterns with deterministic motion such as
an escalator, a windmill, etc.

• discrete textures with stochastic motion such as fish shoal,
insect swarm, etc.

The carrying wave Pi is the most complex phenomenon, and
depends on the considered image sequence. It is characterized
by its propagating speed, its direction and its degree of
stationarity. If one refers to works on video synthesis [23]
and by observing the DynTex database, the wavefront Pi of a
given dynamic texture can be formalized as a sum of cosine
functions, with amplitude Apn ∈ R+∗, angular frequency
ωpn ∈ R3 and phase ψpn ∈ R:

Pi(x) =
∑
pn∈Pi

Apn
(x)Re

(
e(ωpn .x+ψpn )

)
(3)

Functions Pi propagate texture information given by local
oscillating phenomena.

Local phenomena Li differ from the carrying wave by being
purely local. The spatio-temporal support of these phenomena
is given by a spatio-temporal gaussian kernel. The choice of a
gaussian kernel is made because of its optimum time/frequency
tradeoff and for computation time considerations. Local phe-
nomena Li are given by the following expression:

Li(x) =
∑
`∈Li

NG (µ`,Σ`) (x)
∑
`k∈Li

A`k (x)Re
(
e(ω`k

.x+ψ`k)
)

(4)
with for a given local phenomenon `, NG (µ`,Σ`) is a
gaussian kernel localizing phenomenon `. A`k ∈ R+∗,
ω`k ∈ R3 and ψ`k ∈ R represent respectively the amplitude,
the angular frequency and the phase associated to `.

Figure 5 shows the different generated components
using the proposed model: the wavefront (5.a.), local
oscillations (5.b.)) and their superposition (5.c.). These results
show the relevance of our model for representing some
natural textures, for instance waves at the surface of water,
the movement of a flag blowing in the wind etc

(a) (b) (c)

Figure 5. A synthetic dynamic texture generated by the model of equation
(2). (a) Video of the wavefront, (b) locally oscillating phenomena. (c) dynamic
texture generated by the sum of (a) and (b).

Analyzing this class of dynamic textures results in
decomposing them into local oscillating phenomena and non
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local wavefronts. When dealing with natural images, these
decompositions need adapted transforms. These two aspects
constitute our methodological framework for analyzing
natural dynamic textures.

III. DECOMPOSING DYNAMIC TEXTURES

Identifying the parameters and coefficients of the proposed
model is a difficult task if one wants to synthesize a given
texture. Yet, obtained experimental results validate the hypoth-
esis of a superposition of linear components. Existing image
decomposition approaches [20], [21], [22] then seem to be
relevant for extracting these components.

Considering the richness of the available analysis dictionary,
the Morphological Component Analysis approach (MCA)
has been chosen. The diversity and flexibility of the MCA
framework are important points regarding the complexity of
dynamic textures.

Usually used for spatial decompositions, the MCA is ex-
tended in this work to the temporal dimension. In the following
sections, 2D+T multiscale transforms means truly 3D multi-
scale transforms with two spatial variables and one temporal
variable. With such 2D+T transforms, spatio-temporal corre-
lations in a video can be extracted, contrary to successive 1D
and 2D transforms.

A. Morphological Component Analysis

The MCA approach allows to find an acceptable solution
to the inverse problem of decomposing a signal onto a given
vectorial basis, i.e. to extract components (yi)i=1,...,N from
a degraded observation y according to a sparsity constraint.
This is obviously an ill-posed inverse problem. The MCA
approach assumes that each component yi can be represented
sparsely in the associated basis Φi:

∀i = 1, . . . , N, yi = Φiαi (5)

In this way, the obtained dictionary is composed of atoms
built by associating several transforms Φ = [Φ1, . . . ,ΦN ] such
as, for each i, yi is well represented (sparse) in Φi and is not,
or at least not as well represented in Φj (j 6= i).

This induces that:

∀i, j 6= i ‖ΦTi yi‖0 < ‖ΦTj yi‖0 (6)

‖ . . . ‖0 being the pseudo-norm `0 (number of non-zero
coefficients).

The choice of the basis is of course primordial. Each
transform possesses its own characteristics and will be adapted
for extracting a particular phenomenon. This choice will be
discussed in the next section.

Solving equation (6) implies to find a solution to the
equation : y = Φα. Starck et al. propose a solution for
it in [24] and [22] by finding morphological components
(yi)i=1,...,N with the following optimisation problem:

min
y1,...,yN

N∑
i=1

∥∥ΦTi yi
∥∥p
p

such that

∥∥∥∥∥y −
N∑
i=1

yi

∥∥∥∥∥
2

6 σ (7)

where
∥∥ΦTi yi

∥∥p
p

penalizes non-sparse solutions (usually 0 6
p 6 1). σ is the noise standard deviation.

This optimization problem (7) is not easy to solve. If all
components yj except the ith are fixed till iteration k − 1,
it is however proved that the solution α

(k)
i is given by hard

thresholding the marginal residual r(k)
i = y −

∑
j 6=i y

(k−1)
j :

α
(k)
i = δλ(k)

(
ΦTi
(
r

(k)
i

))
(8)

δλ(k) being the thresholding function for threshold λ(k) at
step k. These marginal residuals ri are by construction likely
to contain missing informations of yi. This idea induces an
iterative algorithm for thresholding the marginal residuals for
which main steps are presented in Algorithm 1.

Algorithm 1 Morphological Component Analysis
Task : Decompose a nD signal in dictionary Φ.
Parameters :
• The signal y to decompose
• The dictionary Φ = [Φ1, . . . ,ΦK ]
• The thresholding strategy strategy
• The stopping condition σ

Initialization :
// Components to estimate are set to 0
for i = 1 to N do

ỹ
(0)
i = 0

end for
// Initialization of λ
λ(1) = lambda initialization(strategy)
// Initialization of the iteration number
k = 1
Main loop :

while
∥∥∥y −∑N

j=1 ỹ
(k−1)
j

∥∥∥
2

6 σ do
// For each component
for i = 1 to N do

// Compute the marginal residual
r̃

(k)
i = y −

∑
j 6=i ỹ

(k−1)
j

// Projection of r̃(k)
i on basis Φi

α̃
(k)
i = ΦTi

(
r̃

(k)
i

)
// Hard thresholding of α̃(k)

i

α
(k)
i = δλ(k) α̃

(k)
i

// New estimation of ỹi
ỹ

(k)
i = Φi

(
α

(k)
i

)
end for
// Update of threshold λ
λ(k+1) = update(λ(k),strategy)
// Iterate
k = k + 1

end while

B. Choice of the dictionary

The crucial point in the MCA approach is the choice of
the dictionary. Transforms not adapted to the dynamics of
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phenomena present in the image sequence will deteriorate
the results quality, leading to unsuitable decompositions, large
values of pseudo-norm `0 and unrepresentative coefficients. As
seen in Section II, a dynamic texture can be decomposed into
two distinct phenomena. It is therefore necessary to associate
to each of them the most representative basis.

In [25], [26], the authors show that the 2D+T curvelet
transform [27] brings a relevant discrimination for non local
phenomena propagating temporally. It seems particularly in-
teresting to model long range wavefronts present in a dynamic
texture.

A dynamic texture often presents locally oscillating phe-
nomena. Therefore, the second base of the dictionary is built
from a local transform adapted to oscillations: the 2D+T local
cosine transform.

The MCA dictionary Φ is hence composed of the 2D+T
curvelet transform Φ1 and of the 2D+T local cosine transform
Φ2.

C. Thresholding strategy

The purpose of this article is the decomposition of natural
dynamic textures, therefore our experiments have been con-
ducted on sequences from the DynTex database. The processed
sequences have a duration of 5 seconds (128 images) and a
size of 648 by 540 pixels1. On volumes of such a size, the
computation time is non negligible, as some transforms require
several minutes.

Let function T () measuring the execution time of a trans-
form Φi during one cycle of the algorithm (analysis via Φi
and synthesis via ΦTi ). Two different platforms2 have been
used for the chosen dictionary, giving the computation time
presented in table I.

Platform 1 (32 bits) Platform 2 (64 bits)
T (Φ1) ≈ T (ΦT

1 ) ≈ 259 seconds ≈ 109 seconds
T (Φ2) ≈ T (ΦT

2 ) ≈ 120 seconds ≈ 85 seconds

Table I
COMPUTATION TIME REQUIRED FOR PERFORMING AN ANALYZE OR A

SYNTHESIS WITH THE CHOSEN DICTIONARY ON 2 DIFFERENT HARDWARE
CONFIGURATIONS.

A recent work [28] has shown that a hundred of iterations is
necessary to establish a good separation of the different com-
ponents when a linear thresholding strategy (LTS) is used. In
our case, the total computational time for a 5 second sequence
is given by: 100∗ (T (ΦT1 )+T (Φ1)+T (ΦT2 )+T (Φ2)), which
represents 21 hours on platform 1, and around 10 hours on
platform 2.

If we extend this result to the entire DynTex database (about
700 videos), 700 ∗ 21 hours = 612 days of calculation are
required on a standard computer. This computation time can
be reduced to 291 days on a dedicated server.

Recently Bobin et al. [28] have proposed an adaptive
thresholding strategy ’Mean of Max’ (MoMS) that enables

1ie more than 44 million voxels
2Platform 1 : Processor 32 bits 2.4GHz, 4Go of RAM
Platform 2 : Processor 64 bits 3.2GHz, 24Go of RAM

to obtain similar results but with fewer iterations (50 in
average instead of 100). It represents a computation time of
approximately 10 hours 30 (respectively 5 hours on platform
2) for a 5 second video, resulting in approximately 306 days
(respectively 145 days) for the whole database.

As our aim is dynamic texture characterization for indexing
the DynTex database, the computation time of the MoMS is
still acceptable, since it is always possible to divide the work-
load on several processors. In the case where one searches for
a particular texture using a query sequence, these calculations
are acceptable only on sequences with limited duration and
low resolution. We propose to reduce these limitations by
introducing two new thresholding strategies.

D. Two new adaptive thresholding strategies for improving
computation time

Results of the decomposition using the MCA algorithm
strongly depend on the evolution of the threshold λ(k) in
one iteration of the main loop. Figure 6 shows two different
evolutions of λ(k) corresponding to two fictive examples
of evolution strategies (S1) and (S2). Evolution of λ(k) is
slower in case (S1) than in (S2). In this example, evolution
(S1), respectively (S2), leads to select 5% of the coefficients,
respectively 25%, in the two bases. If we consider that
evolution (S1) gives here an optimal threshold, a failure
to control the value of λ(k) (case S2) will lead to a rapid
allocation of too many coefficients in the two bases, degrading
the final decomposition. The linear thresholding strategy

(S1)

(S2)

5%

25%

1 iteration of the main loop

coefficient amplitude

Figure 6. Two thresholding strategies leading to different evolutions of the
threshold value during one iteration of the main loop.

(LTS) leads to the optimum λ(k) for 100 iterations [28]. For
a large number of natural textures, this number of iterations
can be greatly reduced, depending on the texture properties.
LTS is then no longer optimum. However, the threshold
evolution using LTS can be considered as a minimum slope
below which the evolution of λ(k) is sub-optimal. A good
strategy for computing λ(k) should lead to a slope greater or
equal to the one obtained using LTS.

The ’Mean of Max’ strategy (MoMS) is interesting as it
can adaptively change the evolution of λ(k). However, on
natural texture sequences, this strategy tends to reduce too
drastically this slope, or even almost cancel it.
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a) Adaptive thresholding strategy with linear correction
(ATSLc): we propose to combine these two strategies into
a new so-called adaptive thresholding strategy with linear
correction (ATSLc), which defines λ(k+1) as the minimum
value of λ(k+1) calculated using strategies LTS and MoMS.

The λ(k) update using ATSLc is formalized as follows:

λ(k+1) = min
(

1
2

(m1 +m2), λ(k) − λ(1) − λmin

Nmax

)
(9)

with:
m1 = max

∀i

∥∥ΦTi r
(k)
∥∥
∞

m2 = max
∀j,j 6=i0

∥∥ΦTj r
(k)
∥∥
∞ with i0 = argmax

∀i

∥∥ΦTi r
(k)
∥∥
∞

r(k) = y −
∑K
j=1 ỹ

(k)
j being the total residual

Nmax being the total number of iterations.
Using this strategy, we are sure to change the value of

λ(k+1) corresponding to the steepest slope. In other words,
when MoMS leads to values of λ(k+1) evolving slowly,

λ(k+1) follows the LTS λ(k+1) = λ(k) − λ(1) − λmin

Nmax
.

Otherwise, λ(k+1) follows the MoMS, λ(k+1) = 1
2 (m1 +m2),

reducing the number of main loops in Algorithm 1.

b) Adaptive thresholding strategy with exponential cor-
rection (ATSEc): in some cases, the distribution of the coeffi-
cients is concentrated around the origin. This phenomenon can
occur for several reasons, for instance an unsuitable choice
of the decomposition bases leading to a similar non-sparse
representation in the different bases.

In these cases, the LTS is no longer optimum. Close to the
origin, the threshold range will indeed be too large compared
to the number of coefficients to select in this interval. Figure
7 shows that about 80% of these coefficients are contained in
the last interval: they will be all assigned at once, leading to
unsuitable decompositions.

To overcome this problem, [22] use a thresholding strategy
with exponential decay, ETS. This strategy enables to thresh-
old on a large range of coefficients at the first iterations of
the algorithm, and on small intervals at the last iterations (see
Figure 7). This strategy leads to a better assignment of the
coefficients when concentrated around this origin. However,
as for the LTS strategy, the number of iterations has to be
fixed to a large value.

LTS
ETS

Figure 7. Threshold intervals for the two strategies LTS and ETS on an
illustrative distribution.

Similarly to the ATSLc, we propose a second thresholding
strategy combining the ETS and the MoMS approaches, so-
called adaptive thresholding strategy with exponential correc-
tion, ATSEc.

It can be formalized as follows:

λ(k+1) = min
(

1
2

(m1 +m2), λ(k) ∗
(
λ(1) − λmin

)− 1
Nmax−1

)
(10)

In other words, when MoMS leads to values of λ(k+1)

evolving too slowly, λ(k+1) follows the ETS strategy, λ(k+1) =
λ(k) ∗

(
λ(1) − λmin

)− 1
Nmax−1 . Otherwise, λ(k+1) follows the

MoMS strategy, λ(k+1) = 1
2 (m1 +m2), which also enables to

decrease the iteration number in the main loop of Algorithm
1, while significantly decreasing the slope close to the origin.

IV. RESULTS

A. Computation time considerations

The new proposed thresholding strategies ATSLc and
ATSEc have been implemented in the Morphological
Component Analysis framework and extended to image
sequences.

In both cases, the number of needed iterations for
decomposing a video greatly diminishes. In average, 12
iterations are required for the ATSLc strategy and 17
iterations for the ATSEc strategy using Nmax = 100. The
computation time gain is however not proportional to the
number of removed iterations: as seen in Section III-C, for
each iteration and each basis, an analysis and a synthesis are
required to perform the decomposition. For the ATS, ATSLc
and ATSEc strategies, an additional projection on each basis
is need to compute m1 and m2.

The computation time for a given image sequence is then:
(Number of iterations) ∗(T (ΦT1 ) + 2 ∗ T (Φ1) + T (ΦT2 ) +
2 ∗ T (Φ2)). Performances of the two strategies ATSLc and
ATSEc are given in table II. On a 64-bit platform, only
2 hours are needed to perform the complete decomposition
of a video. Finally 60 days are required for the whole
database using ATSLc and ATSEc strategies when using a
single processor computer.

This computation time can moreover be divided by the
number of cores of the server. With the Platform 2 of Table
I, the decomposition of the whole DynTex database, ie about
700 videos, has been computed in one week.

Platform 1 (32 bits) Platform 2 (64 bits)
ATSLc ≈ 3h47 ≈ 1h56
ATSEc ≈ 5h22 ≈ 2h44

Table II
AVERAGE COMPUTATION TIME NEEDED TO PERFORM THE MCA

DECOMPOSITION OF A VIDEO FROM DYNTEX USING ATSLC AND ATSEC
STRATEGIES, FOR TWO HARDWARE CONFIGURATIONS.

The use of ATSLc and ATSEc strategies seems very
interesting for reducing the computation time. The
decomposition quality using the new adaptive thresholding
strategies is analyzed in the following section.
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Figure 8. Thresholding strategies LTS, ATSLc and ATSEc. On the left, the number of thresholded coefficients during the iteration process N(k)
coef . On the

right, the reconstruction error norm `2 with respect to the number of iterations ξ(k).

B. Comparison of the thresholding strategies

Decomposition results of ATSLc and ATSEc strategies are
compared using two quantitative criteria. The linear threshold-
ing strategy (LTS) [24], [22] will be used as a reference for
comparison.

The first criterion is the number of coefficients selected by
the MCA algorithm during each iteration k :

∀k,N (k)
coef =

N∑
i=1

∥∥∥α(k)
i

∥∥∥
0

(11)

where ‖ . . . ‖0 is the pseudo-norm `0 (number of non-zero
coefficients).

The thresholding strategy can be considered as successful
if N (k)

coef grows steadily during the iteration process. Indeed,
an unsuitable thresholding strategy will irregularly allocate
the coefficients during the iteration process, and will be
represented by a non-regularly growing function.

The second criterion is the reconstruction error norm `2 after
k iterations of the algorithm:

∀k, ξ(k) =

∥∥∥∥∥y −
N∑
i=1

ỹ
(k)
i

∥∥∥∥∥
2

(12)

Similarly to the first criterion, the curve regularity indicates
the performance of the thresholding strategy. The more the
reconstruction error quickly decreases during the iterations,
the more relevant the selected coefficient are.

Figure 8 shows the evolution of N (k)
coef and ξ(k) with respect

to the number of iterations for LTS, ATSLc and ATSEc
strategies applied on several videos. For obtaining this curves,
a mean of curves on 20 image sequences is made.

Several observations can be made:
• Using the LTS strategy, most of the coefficients are se-

lected during the latest iterations of the algorithm (about
80%). This can be observed both on the rapid growth of
curve N (k)

coef , and on the rapid decay of curve ξ(k) during
the final iterations.

• Both strategies ATSLc and ATSEc have a similar be-
haviour at the first iterations and diverge thereafter.
During the first iterations, the two strategies choose the
maximum slope 1

2 (m1+m2), but thereafter differ in their
respective corrections.

• One can notice that the reconstruction error decreases al-
most uniformly for the two adaptive strategies. Therefore
both strategies constantly select appropriate coefficients.
If a strategy selects unappropriated coefficients, the re-
construction error will indeed stay constant or could even
grow.

• During the iteration process, both adaptive strategies
spend more time sorting coefficients than the LTS strat-
egy. It takes about 5 iterations to the LTS strategy to
classify approximately 80% of the information, whereas
adaptive strategies spend at least 10 iterations.

Considering the gain in computation time and the performance
reached, ATSLc and ATSEc strategies appear to be relevant
and promising for processing image sequences with natural
textures.

C. Comparison between static and dynamic MCA decompo-
sition

To highlight the temporal influence in our approach, Figure
9 presents a comparison between static MCA decomposition
(computed frame by frame) and our 2D+T MCA decompo-
sition. The difference between these methods is the chosen
dictionary. Indeed, for static MCA decomposition, 2D curvelet
transform and 2D local cosine transform are used rather than
2D+T multiscale transforms. The other parameters (number
of scales, LDCT window size, convergence criterion, etc) are
identical for both approaches.

Many observations (highlighted areas in Figure 9) can be
made on this comparison:
• (a) with 2D MCA decomposition, the local phenomena

are present in the geometric component, contrary to 2D+T
decomposition which only captures the lake surface mo-
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Figure 9. Comparison between static MCA decomposition and our 2D+T MCA decomposition. Spatio-temporal cuts (xt and yt) enable to emphasize the
temporal aspect of our 2D+T decomposition compared to 2D decomposition.

tion (corresponding to the wavefront for this dynamic
texture).

• (b) the geometric component retrieved using 2D+T
curvelet transform better captures the structure of ob-
jects. Indeed, for 2D MCA decomposition, the duck is
extracted both in the geometric component and the texture
component. This phenomenon is not observed with 2D+T
decomposition.

• (c) the extracted behavior is more temporally consistent
with 2D+T MCA decomposition compared to 2D decom-
position. Indeed, in this last decomposition, there is no
temporal coherence in the texture component.

In the 2D approach, as the temporal information is not taken
into account, the decomposition can not extract the spatio-
temporal behavior of dynamic textures.

D. Dynamic texture decomposition

Results obtained using strategies ATSLc and ATSEc are
promising and satisfactory. In this section, three of them are
described in details3.

The first video shows a duck drifting slowly in a canal
(Figure 10). Reflections of trees in the rippling water and

3These three videos and other results are visible at:
http://mia.univ-larochelle.fr/demos/dynamic textures/
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Figure 10. Results of the MCA decomposition on a video using the ATSLc strategy. spatio-temporal cuts xt enable to emphasize the temporal aspect of the
decomposition. The geometric component is retrieved using the 2D+T curvelet transform while the texture component is obtained by the 2D+T local cosine
transform.

a static texture background are also observable. Figure 10
shows the decomposition results obtained on this video using
the MCA algorithm with the ATSLc strategy.

The geometric component is retrieved using the 2D+T
curvelet transform while the texture component is obtained
by the 2D+T local cosine transform: ripples, which are local
phenomena, are well captured by the texture component,
whereas reflections on the water surface are retrieved in the
geometric component.

Spatio-temporal cuts along a xt plane enable to visualize
the obtained decomposition. They show that the different
objects in the scene (the duck, reflections of the trees on
water, etc) are correctly considered as geometry. Reflections
of the trees are not present in the texture component anymore.
One can also observe that oscillations have been strongly
attenuated in the geometric component. Cuts also show that
spatio-temporal local phenomena (lake ripples) are well
extract in the texture component.

This decomposition can bring us information that was not
discernible on the original image sequence. For example, the
texture of the duck’s plumage under its neck can be observed

in the texture component, and is not visible in the original
video.

The next image sequence represents a fountain (Figure
11). This fountain is composed of a jet, which once expelled,
creates ripples at the water surface. Results of the 2D+T
decomposition are shown on Figure 11.

The two obtained components seem relevant: in the
geometric part, the central column of the fountain and the bell
shape caused by the jet are visible, whereas almost absent in
the texture component.

One can also notice that the entire area in front of the
water jet is free of ripples, observable contrariwise in the
other component. These observations are also well noticeable
on areas represented as surfaces where the geometric part is
composed of a slight wave free of high frequency oscillations.
Wavefront and local phenomena are not distinguishable on
the surface representation of the original video, but are clearly
visible after 2D+T MCA decomposition.

The last video shows an escalator (Figure 12). This
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Figure 11. Decomposition results of a video using the MCA algorithm and the ATSLc strategy. Regions of interest are plotted as surfaces in order to better
visualize the algorithm behaviour. The geometric component is retrieved using the 2D+T curvelet transform while the texture component is obtained by the
2D+T local cosine transform.

example is interesting because it is a dynamic texture that
illustrates our model definition. An escalator is indeed
composed of a long range wavefront (the steps) and more
local phenomena (the step streaks). Figure 12 displays the
results obtained using the 2D+T MCA algorithm.

After our 2D+T MCA decomposition, the long range
wavefront and local phenomena are well separated.
Spatio-temporal cuts permit a better visualization of the
decomposition results. One can also observe that the step
motion is better observable on the YT plane of the geometric
component than on the original sequence. In addition, most
of the step streaks are captured in the texture component.

All the results presented above show that our decomposition
based on the MCA algorithm extended to the temporal
dimension can extract many different phenomena present in
complex scenes containing dynamic textures. These findings
are observed on other videos of the DynTex database.

The next section presents a concrete application of the
2D+T MCA decomposition for computing the global motion
in an image sequence.

V. APPLICATION OF DYNAMIC TEXTURE DECOMPOSITION
TO OPTICAL FLOW ESTIMATION

Decomposing a dynamic texture into a geometrical com-
ponent and a texture component brings a better visual un-
derstanding of the different phenomena. In order to push
forward the analysis, our decomposition method is applied to
the detection of the principal motion of a dynamic texture.
Motion in the video is estimated using the classical Horn and
Schunk algorithm [29]. The optical flow is computed both on
the original video and on the geometrical component.

The global motion estimation is performed on a video of
the sea on which waves and foam can be observed. Results are
presented on Figure 13. Two visualization systems are used to
characterize the estimated optical flow:
• a map of the vector field where the color (respectively the

saturation) indicates the direction (respectively the norm)
of the optical flow.

• the orientation homogeneity of the motion vector field,
introduced in [14]. The orientation homogeneity reflects
the flow homogeneity of the overall motion compared to
its mean orientation.
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Figure 12. Results of the MCA decomposition on a video using the ATSLc strategy. Spatio-temporal cuts are presented in order to better visualize the
decomposition results. The geometric component is retrieved using the 2D+T curvelet transform while the texture component is obtained by the 2D+T local
cosine transform.
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the geometric component
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Figure 13. Results of the optical flow estimation using the Horn and Schunk method applied on the original video and on its geometric component.
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Circular histograms of the motion direction distribution also
give information on the estimated optical flow.

One can notice that all the local dynamic phenomena are
detected in the original sequence. No color is prominent in the
optical flow norm map as motion is mainly due to water foam
which is turbulent and non directional.

Conversely, when the optical flow is computed on the
geometric component only, a main motion direction can be
distinguished, which is the one of the wavefront. Motion
borders are well localized, contrary to motion estimation on
the original sequence with a large regularization coefficient.
Finally, the main motion direction can be observed on the
circular histogram, and is much more isotropic than in the
previous case.

This application emphasizes the interest of our 2D+T MCA
decomposition method for understanding, interpreting and
extracting dynamic textures.

VI. CONCLUSION AND PROSPECTS

A. Conclusion

This paper formalizes a new model of dynamic textures,
based on the superimposition of large scale propagating
wavefronts and local oscillating phenomena. Decomposition
approaches enable to better understand these different compo-
nents. Among them, the MCA approach is very appropriate,
but suffers from a high computation time, which is an impor-
tant issue in the context of video.

After considering the different possible dictionaries for
dynamic texture analysis, we propose two new adaptive thresh-
olding strategies: the ATSLc and the ATSEc. These two new
thresholding strategies lead to a significant gain in compu-
tation time. Compared to the original strategy, the necessary
calculations are reduced by about five times, with equivalent
quality of results. In our research context of dynamic texture
indexing, it enables to release the constraints of low resolution
and duration on queries in a large video database.

Results on real videos from DynTex have been finally
presented. These results confirm the relevance of the proposed
model and enable to understand the different complex phenom-
ena present in dynamic textures.

Finally, results of the MCA decomposition are used for
estimating the global motion of a given video. Computing
the optical flow on the geometric component appears to be
much more relevant than a direct computation on the original
sequence.

B. Prospects

The model developed in this article characterizes a certain
class of dynamic textures. This model can be extended to other
classes by possibly adding new dynamics (divergence, vortex,
etc). These new parts of the model will be later extracted by
adapted bases in the MCA algorithm.

In the context of video indexing, the different components
obtained using the MCA algorithm can be used for extracting
characteristic features: some related to the geometry of the
dynamic texture (main motion direction, uniformity of the
global movement, etc) and some characterizing more local

phenomena (speed, local vortex, etc).
An application of our 2D+T MCA decomposition on optical

flow estimation has been presented. Many other applications
can be considered: modification of dynamic texture dynamics
(for instance to reverse the stream of a river), spatio-temporal
segmentation, masking static objects on dynamic backgrounds
(ie remove the duck from the video in Figure 10), etc.
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